Beyond Data Quantity: Key Factors Driving Performance in Multilingual Language Models

Sina Bagheri Nezhad, Ameeta Agrawal, Rhitabrat Pokharel Department of Computer Science Portland State University, USA

Introduction

- Multilingual Language Models (MLLMs) show performance disparities across languages.
- We explore factors beyond pre-train data size and model size that influence MLLM performance.
- Analyzed 204 languages using SIB-200 (classification) and Flores-200 (machine translation) datasets.

		•			· · · · ·
Generation Task FLORES-200	Bloom, BloomZ, XGLM	10 regression models to predict performance of LLM based on different	Find the best regression model	SHAP values for the best regression model	Feature importanc
\backslash		features			

Methodology

- Models Evaluated: Bloom, BloomZ, XGLM (various sizes)
- **Tasks**: Classification & Generation in Zero-shot & Two-shot settings
- **Key Features Analyzed**:
 - Model-specific: Model size, Pre-train data, \bullet Instruction tuning (BloomZ)
 - Language-specific: Script type, Token similarity, \bullet Language family
 - Socio-linguistic: Population, Language vitality, Digital support
 - Geographical & Cultural: Geographical proximity, Country similarity

Key Findings

Feature Importance (via SHAP Analysis)

Token Similarity & Country Similarity emerged as pivotal factors.

Portland

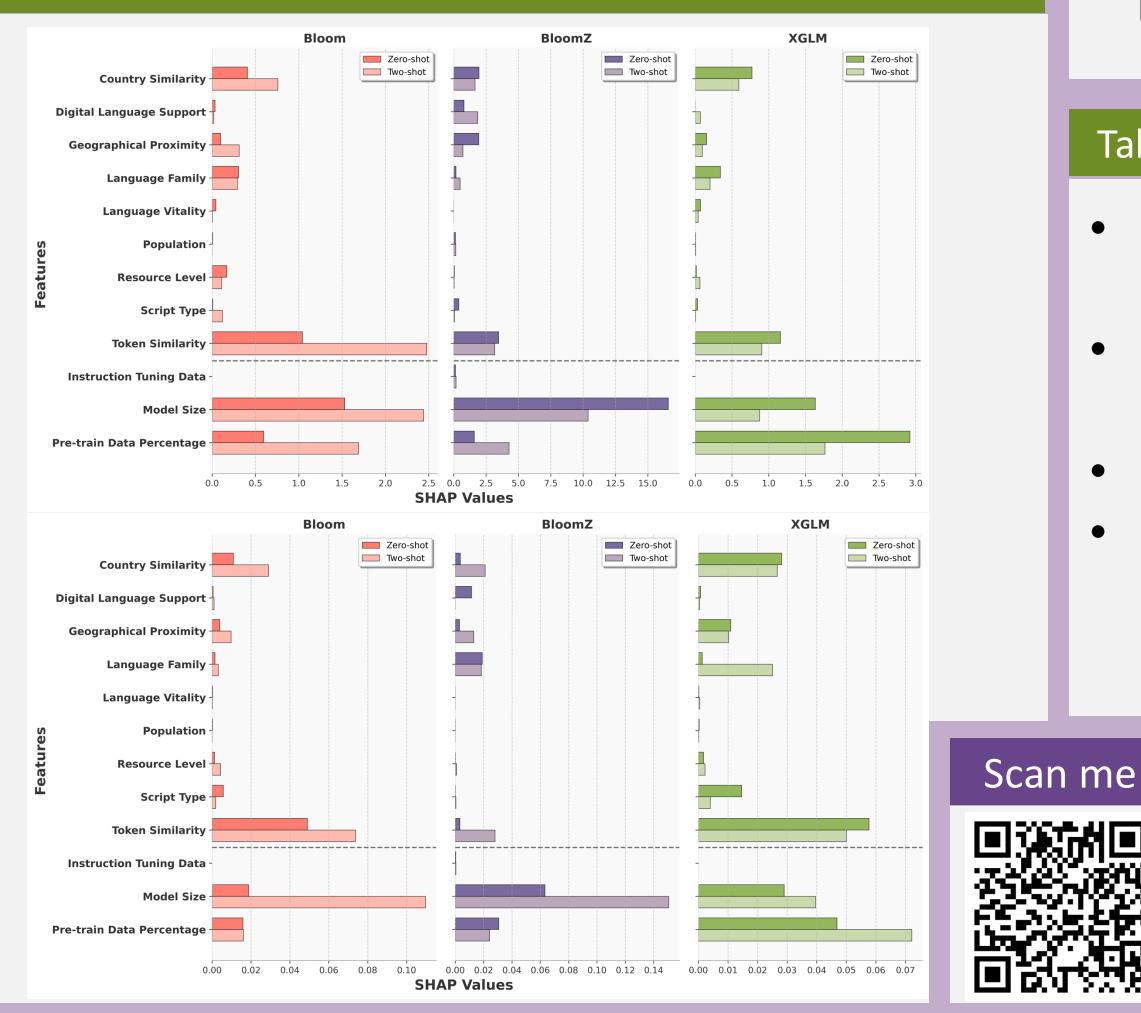
State

- Pre-train data percentage & Model size significantly impact performance.
- Geographical proximity had minimal effect; \bullet country similarity was more influential.
- Instruction tuning (BloomZ) had little impact \bullet compared to pre-train data.

Regression Model Performance

- **Ensemble models (XGBoost, Random Forest,** Gradient Boosting) performed best in predicting MLLM success.
- Linear models struggled, highlighting non-

Results



linearity in multilingual modeling.

Takeaway

- Token similarity enhances cross-lingual ${\color{black}\bullet}$ transfer.
- Country similarity plays a crucial role in language model effectiveness.
- Pre-train data remains the most critical factor.
- Insights can guide future development of more equitable and effective multilingual models.

Acknowledgments

